Multi Person Tracking Within Crowded Scenes
نویسندگان
چکیده
This paper presents a solution to the problem of tracking people within crowded scenes. The aim is to maintain individual object identity through a crowded scene which contains complex interactions and heavy occlusions of people. Our approach uses the strengths of two separate methods; a global object detector and a localised frame by frame tracker. A temporal relationship model of torso detections built during low activity period, is used to further disambiguate during periods of high activity. A single camera with no calibration and no environmental information is used. Results are compared to a standard tracking method and groundtruth. Two video sequences containing interactions, overlaps and occlusions between people are used to demonstrate our approach. The results show that our technique performs better that a standard tracking method and can cope with challenging occlusions and crowd interactions.
منابع مشابه
Online multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملTracking Using Motion Patterns for Very Crowded Scenes
This paper proposes Motion Structure Tracker (MST) to solve the problem of tracking in very crowded structured scenes. It combines visual tracking, motion pattern learning and multi-target tracking. Tracking in crowded scenes is very challenging due to hundreds of similar objects, cluttered background, small object size, and occlusions. However, structured crowded scenes exhibit clear motion pa...
متن کاملA Multiview Approach to Tracking People in Crowded Scenes Using a Planar Homography Constraint
Occlusion and lack of visibility in dense crowded scenes make it very difficult to track individual people correctly and consistently. This problem is particularly hard to tackle in single camera systems. We present a multi-view approach to tracking people in crowded scenes where people may be partially or completely occluding each other. Our approach is to use multiple views in synergy so that...
متن کاملSpatio-temporal crowd density model in a human detection and tracking framework
Recently significant progress has been made in the field of person detection and tracking. However, crowded scenes remain particularly challenging and can deeply affect the results due to overlapping detections and dynamic occlusions. In this paper, we present a method to enhance human detection and tracking in crowded scenes. It is based on introducing additional information about crowds and i...
متن کاملModel-Based Occlusion Handling for Tracking in Crowded Scenes
The task of reliable detection and tracking of multiple objects becomes highly complex for crowded scenarios. Data association is difficult to perform reliably in the presence of missing observations due to occlusions. We propose a novel real-time approach to segment and track multiple overlapping humans. The optimal segmentation solution is given by the maximum likelihood estimate in the joint...
متن کامل